## **Optimization-Based Modeling:**

A New Strategy for the Compatible Discretization and Scalable Solution of Multiphysics Problems

**Pavel Bochev** 

Numerical Analysis and Applications
Sandia National Laboratories

Exascale Research Conference, April 16-18, 2012, Portland

Supported in part by











#### **Outline**

- Research drivers
- Why optimization?
- Applications of Optimization-Based Modeling
  - Abstract theory of optimization based operator splitting
  - Application to synthesis of solvers
  - Robust and efficient optimization-based monotone transport

#### **Key Collaborators**



K. Peterson SNL



D. Ridzal SNL



J. Young SNL



M. Shashkov LANL



M. Gunzburger FSU





#### **Research Drivers**

#### Robust and efficient solution of multiphysics problems

Dominant solution strategy for multiphysics, multiscale problems for 30+ years:

1st order operator splitting, decoupled nonlinear solution methods, semiimplicit and explicit time integration.

This strategy is rapidly approaching a point of diminishing returns because

- 1) It lacks the stability properties for simulations over dynamic scales of interest
- 2) It often relies on heuristics to control the splitting errors
- 3) Is prone to non-intuitive instabilities

**DOE Town Hall Report** 

#### Compatible discretization of multiphysics problems

The advanced state of **single physics discretizations** contrasts sharply with the **limited mathematical understanding** of compatible discretizations for multiphysics problems:

- 1) Lack of formal mathematical theory to guide the compatible discretization.
- 2) Physics components have disparate mathematical structures, which calls for mutually exclusive discretization and/or solver strategies.
- 3) Direct preservation of physical properties imposes severe grid/space constraints and tangles accuracy with the preservation of the properties.

## Synthesis of Discretizations and Solvers

#### **Challenges:**

$$\partial_t u = (L_1 + L_2)u$$

Typically,  $L_1$  and  $L_2$  have different mathematical structures

$$\partial_t u^h = (L_1 + L_2)^h u^h$$

$$L_1^h$$
  $L_2^h$ 

Stable compatible methods may exist for  $L_1$  and  $L_2$  but not for the composite problem:

$$(L_1 + L_2)^h \neq L_1^h + L_2^h$$

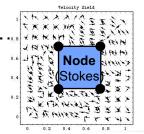
$$\left(L_1^h
ight)^{-1} \quad \left(L_2^h
ight)^{-1}$$

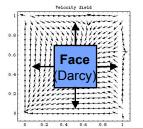
Efficient solvers may exist for  $L_1$  and  $L_2$  but not for the composite problem

$$((L_1 + L_2)^h)^{-1} = ?$$

Traditional approaches: regularization, operator splitting

- ⇒ tunable parameters **reduce robustness**
- ⇒ splitting errors reduce accuracy & stability









## **Preservation of Physical Properties**

#### **Challenges:**

$$\partial_t u = Lu$$

Generally, discretization does not automatically preserve constraints, even with stabilization/regularization

$$\partial_t u^h = L^h u^h$$

$$C \le Cu \le \overline{C}$$

In multiphysics codes this solution is input for another physics component



$$Bu = b$$
 .....

Automatic preservation of maximum principle, local and global bounds, is required for robust, predictive simulations

$$Bu^h = b$$

Traditional approaches: limiters, "repair", special grids, ...

- ⇒ limiters & repair entangle constraints & accuracy and obscure sources of discretization errors
- ⇒ special grids **reduce the scope** of the methods





## Optimization-based modeling (OBM)

#### Our approach: a divide and conquer strategy

Use **optimization and control ideas** to **manage externally** those objectives that are **difficult** (or impractical) to handle **directly** in the discretization process by manipulating the grid, the formulation, or the reconstruction.

#### **Potential payoffs**

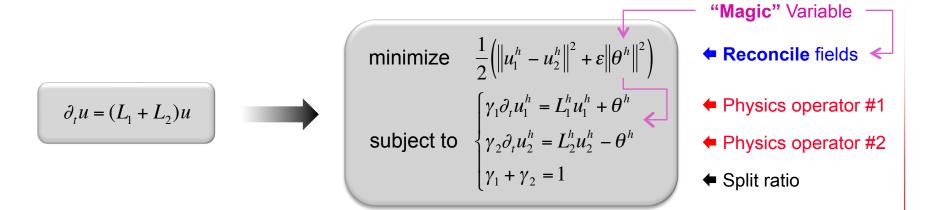
- Elimination of splitting errors: reformulation into an equivalent optimization problem
- Elimination of limiters: lifts the associated restrictions on cell types & accuracy
- Balancing of constraints: accuracy, mass conservation, monotonicity, variable bounds...
- Generality with respect to problem discretization: applicable to FE, FV and FD schemes as well as particle methods, on mixed n-D grids
- □ Generality with respect to problem type: elliptic, hyperbolic, ...
- Enable efficient reuse of existing codes: solvers, optimization tools,...





# Synthesis of discretizations and solvers as an optimization problem

| Objective                                                                | Constraints                           |
|--------------------------------------------------------------------------|---------------------------------------|
| Reconcile approximate solutions of the single physics operator equations | Enforce constituent component physics |



#### References

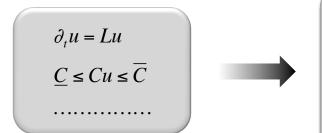
- "Optimization-based approach for robust solution algorithms", Bochev, Ridzal, SINUM, 2009
- "Additive operator decomposition", Bochev, Ridzal, Springer LNCS 5910, 2010
- "Optimization-based domain decomposition", M. Gunzburger, 1997
- "Decomposition of everything", J.L. Lyons, 2001





# Preservation of physical properties as an optimization problem

| Objective                                                          | Constraints                      |
|--------------------------------------------------------------------|----------------------------------|
| Match a discrete target solution having the best possible accuracy | Enforce lost physical properties |



minimize 
$$\frac{1}{2} \| u^h - u_T^h \|^2$$
subject to 
$$\begin{cases} \underline{C} \le C u^h \le \overline{C} \\ \partial_t u_T^h = L^h u_T^h \end{cases}$$

- ← Match target field
- Enforce constraints
- **←** Define target field

#### References

- "Optimization based remap", Bochev, Ridzal, Scovazzi, Shashkov JCP, 2011
- "Optimization-based transport", Parts 1-3, Bochev, Peterson, Ridzal, Young, LNCS 2012





## Abstract theory of additive operator splitting

Reformulation of  $Q(u, v) = \langle f, v \rangle$  as a constrained optimization problem

$$\min J(u_1,u_2) = \frac{1}{2} \left\| u_1 - u_2 \right\|_U^2 \text{ subject to } \begin{cases} Q_1 \big( u_1, v_1 \big) - \big( \theta, v_1 \big)_V = \big\langle f, v_1 \big\rangle & \forall v_1 \in V \\ Q_2 \big( u_2, v_2 \big) + \big( \theta, v_2 \big)_V = 0 & \forall v_2 \in V \end{cases} \quad \Rightarrow \quad \theta - \text{virtual control}$$

#### **Theorem**

Assume that the additive split  $Q(u,v) = Q_1(u,v) + Q_2(u,v)$  is such that

$$\sup_{v \in V} \frac{Q_i(u,v)}{\|v\|_V} \ge \underline{\gamma_i} \|u\|_U \quad \sup_{u \in U} \frac{Q_i(u,v)}{\|u\|_U} > 0 \quad \text{and} \quad Q_i(u,v) \le \overline{\gamma_i} \|u\|_U \quad \forall u \in U, \forall v \in V$$

There exist unique optimal solution  $(u_1, u_2, \theta)$  and  $u = u_1 = u_2$  where  $Q(u, v) = \langle f, v \rangle$ .

#### **Notable facts**

- Optimization exposes the constituent components of the multiphysics operator
- Optimization problem is well-posed without control penalty
- As a result, original and reformulated problems are completely equivalent

There's no splitting error!





## **Application: Synthesis of Fast Solvers**

#### **Assumptions**

$$Q(u,v) = Q_1(u,v) + Q_2(u,v)$$

 $Q(u,v) = Q_1(u,v) + Q_2(u,v)$  Fast and efficient solvers exist for  $Q_1$  and  $Q_2$ 

#### Approach: solve the equivalent reduced-space optimization problem

$$\min J(\vec{u}_1, \vec{u}_2) = \frac{1}{2} (\vec{u}_1 - \vec{u}_2)^T \mathbf{U} (\vec{u}_1 - \vec{u}_2) \text{ s.t. } \begin{cases} \mathbf{Q}_1 \vec{u}_1 - \mathbf{V} \vec{\theta} = \vec{f} \\ \mathbf{Q}_2 \vec{u}_2 + \mathbf{V} \vec{\theta} = \vec{0} \end{cases} \implies \min J_{RED}(\vec{\theta}) = \frac{1}{2} \vec{\theta}^T \mathbf{H}_{RED} \vec{\theta} - \vec{\theta}^T \vec{f}_{RED}$$

#### **Algorithm:**

| Equation                                       | Compute                                                            | Solve Properties                                                               |                                                               |  |
|------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Adjoint                                        | $\vec{y}_1 = \mathbf{V}\vec{\theta}$                               | $\mathbf{Q}_1 \vec{x}_1 = \vec{y}_1,  \mathbf{Q}_2 \vec{x}_2 = \vec{y}_1$      | Concurrency: state and adjoint can be solved independently.   |  |
| State                                          | $\vec{y}_2 = \mathbf{U}(\vec{x}_1 - \vec{x}_2)$                    | $\mathbf{Q}_1^T \vec{x}_3 = \vec{y}_2,  \mathbf{Q}_2^T \vec{x}_4 = -\vec{y}_2$ | <b>Efficiency:</b> application of $H_{RED}$ only              |  |
| $\mathbf{H}_{RED}\vec{\theta} = \vec{f}_{RED}$ | $\mathbf{H}_{RED}\vec{\theta} = \mathbf{V}(\vec{x}_3 + \vec{x}_4)$ |                                                                                | requires inversion of operators for which fast solvers exist. |  |





## Application to an advection-diffusion problem

Additive split  $\gamma = 1$ 

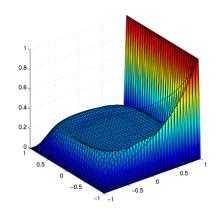
| $Q_1(u,v)$ = Diffusion                                                                                                              | $Q_2(u,v)$ = -Diffusion                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma \left( \nabla u^h, \nabla v^h \right) + \left( \mathbf{b} \cdot \nabla u^h, v^h + \tau \mathbf{b} \cdot \nabla v^h \right)$ | $(\kappa - \gamma) \Big( \nabla u^h, \nabla v^h \Big) - \Big\langle \kappa \Delta u^h, \tau \mathbf{b} \cdot \nabla v^h \Big\rangle_h$ |

**Synthesized solver** 

| GMRES(200)                                     | ML <sup>SGS</sup>              | ML <sup>SGS</sup>              |
|------------------------------------------------|--------------------------------|--------------------------------|
| $\mathbf{H}_{RED}\vec{\theta} = \vec{f}_{RED}$ | $\mathbf{Q}_1  \mathbf{Q}_1^T$ | $\mathbf{Q}_2  \mathbf{Q}_2^T$ |

#### **Elman/Silvester/Wathen:** "double-glazing" **b** ≠ *const*

#### **Essentially fixed cost**



| Study             | Fixed diffusion: 10 <sup>-8</sup> |     |     | Fixed grid size: 128 |      |      |
|-------------------|-----------------------------------|-----|-----|----------------------|------|------|
| Solver <b>Ψ</b>   | 64                                | 128 | 256 | 10-2                 | 10-4 | 10-8 |
| Synthesized       | 114                               | 97  | 77  | 62                   | 97   | 97   |
| ML <sup>SGS</sup> | 97                                | ST  | ST  | 11                   | ST   | ST   |
| ML <sup>ILU</sup> | 71                                | 196 | MX  | 9                    | 96   | 196  |
| BAMG              | 72                                | 457 | MX  | 7                    | 33   | 457  |

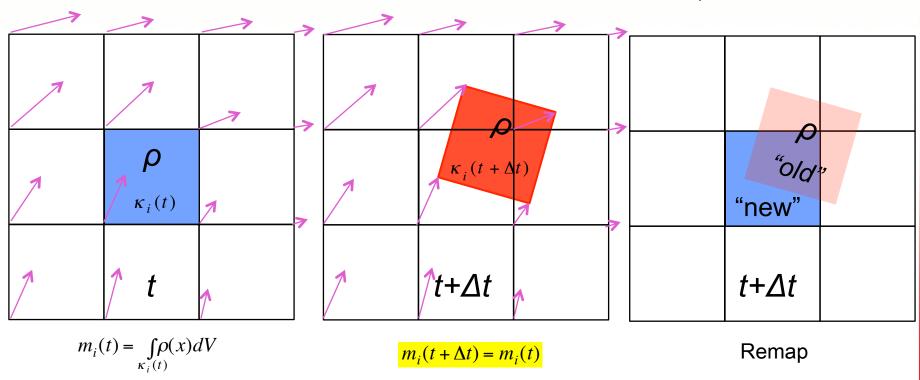
BAMG= Boomer AMG from hypre (LLNL) ML = Trilinos AMG (Sandia)





## Optimization-based monotone transport (OBT)

Mass is conserved in Lagrangian volumes:  $\frac{d}{dt}m_i(t) = \frac{d}{dt}\int_{\kappa_i(t)}^{\infty} \rho(x)dV = 0$ 



### Transport = incremental mass/density remap

Bochev, Ridzal, Young, Peterson. *Optimization-based modeling with applications to transport Parts 1-3,* **Springer Lecture Notes in Computer Science**, *LNCS 7116, 2012.* 



## Mass/density remap as an optimization problem

The exact mass on new cell  $\tilde{\kappa}_i$  can be expressed in aggregate mass-transfer form:

$$\tilde{m}_i^{EX} = m_i^{EX} + \delta m_i^{EX}; \quad \delta m_i^{EX} = \int_{\kappa_i} \rho(x) dV - \int_{\kappa_i} \rho(x) dV$$

Therefore, the mass on the new cell  $\tilde{\kappa}_i$  can be approximated by

$$\tilde{m}_i^h = m_i^h + \delta m_i^h$$
, where  $\delta m_i^h = \int_{\tilde{\kappa}_i} \rho_i^h(x) dV - \int_{\kappa_i} \rho_i^h(x) dV \approx \delta m_i^{EX}$ 

C1: Mass conservation. Requires a single linear constraint:

$$\sum_{Cell} \delta m_i^h = 0 \quad \Rightarrow \quad \sum_{Cell} \tilde{m}_i^h = M$$

**C2:** Linearity preservation. Guaranteed if  $\rho_i^h$  is exact for linear functions on all  $\kappa_i$ :

$$\delta m_i^T = \int_{\tilde{\kappa}_i} \rho_i^h(x) dV - \int_{\kappa_i} \rho_i^h(x) dV$$
 Target (**high-order**) mass-transfers

C3: Local bounds 
$$\Rightarrow \delta \tilde{m}_i^{min} \leq \sum_{cell} \delta m_i^h \leq \delta \tilde{m}_i^{max}$$
  $i = 1,...,N$  Box constraints





## Mass/density remap as a QP

#### OBT = "singly linearly constrained QP with simple bounds"

minimize 
$$\sum_{Cell} \left( \delta m_i^h - \delta m_i^T \right)^2$$
 subject to
$$\delta \tilde{m}_i^{min} \leq \delta m_i^h \leq \delta \tilde{m}_i^{max} \quad i = 1, ..., N$$

$$\sum_{Cell} \delta m_i^h = 0$$
C2

C3

C1

#### Theorem.

#### Existence of unique optimal solutions.

The OBT feasible set is non-empty: given a density distribution there exists a set of aggregate mass transfers  $\delta m_i^h$  which satisfy the box constraints and sum up to zero.

#### Preservation of linearity.

Under mild conditions on the mesh motion, OBT preserves linear densities.





## **Fast Optimization Algorithm for OBT**

#### Key property of singly linearly constrained QP with simple bounds:

minimize 
$$\sum_{Cell} \left( \delta m_i^h - \delta m_i^T \right)^2 \quad \text{subject to}$$
 
$$\delta \tilde{m}_i^{min} \leq \delta m_i^h \leq \delta \tilde{m}_i^{max}; i = 1, ..., N \quad \text{and} \quad \sum_{Cell} \delta m_i^h = 0$$

Without the equality constraint the QP is fully separable into *N* one-dimensional QPs with simple bounds

#### The Lagrangian

$$L(\delta m, \lambda, \mu_1, \mu_2) = \sum_{Cell} \left( \delta m_i^h - \delta m_i^T \right)^2 - \lambda \sum_{Cell} \delta m_i^h - \sum_{Cell} \mu_{1,i} (\delta m_i^h - \delta \tilde{m}_i^{min}) - \sum_{Cell} \mu_{2,i} (\delta m_i^h - \delta \tilde{m}_i^{max})$$

#### The Karush-Kuhn-Tucker (KKT) conditions

$$\begin{cases} \delta m_i^h = \delta m_i^T + \lambda + \mu_{1,i} - \mu_{2,i} \\ \delta \tilde{m}_i^{min} \leq \delta m_i^h \leq \delta \tilde{m}_i^{max} \\ \mu_{1,i} \geq 0, \quad \mu_{2,i} \geq 0 \\ \mu_{1,i} (\delta m_i^h - \delta \tilde{m}_i^{min}) = 0, \\ \mu_{2,i} (\delta m_i^h - \delta \tilde{m}_i^{max}) = 0 \end{cases}$$
 and 
$$\sum_{Cell} \delta m_i^h = 0$$

Without the equality constraint the KKT conditions are fully separable and can be solved in parallel for any fixed value of  $\lambda$ .





## **Fast Optimization Algorithm for OBT**

#### Step 1: solve for $\lambda$ fixed

$$\begin{split} \delta m_i^h &= \delta m_i^T + \lambda & \mu_{1,i} &= 0 & \mu_{2,i} &= 0 & \text{if} & \delta \tilde{m}_i^{min} \leq \delta m_i^T + \lambda \leq \delta \tilde{m}_i^{max} \\ \delta m_i^h &= \delta \tilde{m}_i^{min} & \mu_{2,i} &= 0 & \mu_{1,i} &= \delta m_i^h - \delta m_i^T - \lambda & \text{if} & \delta \tilde{m}_i^{min} \geq \delta m_i^T + \lambda \\ \delta m_i^h &= \delta \tilde{m}_i^{max} & \mu_{1,i} &= 0 & \mu_{2,i} &= \delta m_i^T - \delta m_i^h + \lambda & \text{if} & \delta m_i^T + \lambda \geq \delta \tilde{m}_i^{max} \end{split}$$



$$\delta m_i^h(\lambda) = median(\delta \tilde{m}_i^{min}, \delta m_i^T + \lambda, \delta \tilde{m}_i^{max}); \quad i = 1, ..., N$$

#### Step 2: adjust $\lambda$ in an outer iteration to satisfy the single equality constraint

Solve 
$$\sum_{Cell} \delta m_i^h(\lambda) = 0$$

piecewise linear, monotonically increasing function of single scalar variable  $\lambda$ .

- Can solve to machine precision by a simple secant method
- Globalization is unnecessary because  $\lambda_0$ =0 is an excellent initial guess:

$$\delta m_i^h(\lambda_0) = median(\delta \tilde{m}_i^{min}, \delta m_i^T, \delta \tilde{m}_i^{max}); \quad i = 1, ...., N$$

- $\delta m_i^h(\lambda_0)$  solves the QP without the equality constraint, i.e., "almost" a solution
- Locality  $\Rightarrow \delta m_i^h(\lambda_0)$  barely violates the mass conservation constraint





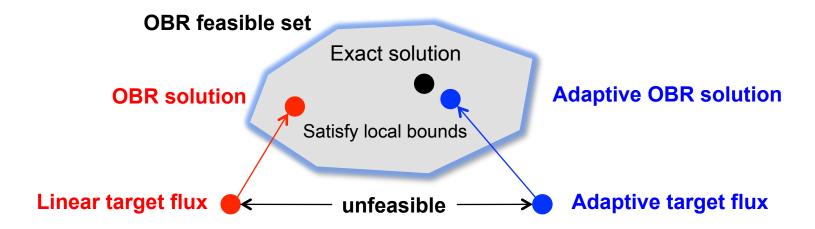
## **OBT** with adaptive targets

#### **OBT** always finds the best possible (optimal) solution w.r.t. the targets

We can improve OBR/T solution by using targets, which adapt to local solution features

#### Adaptive target definition

Use residual information to modify targets depending on local solution features



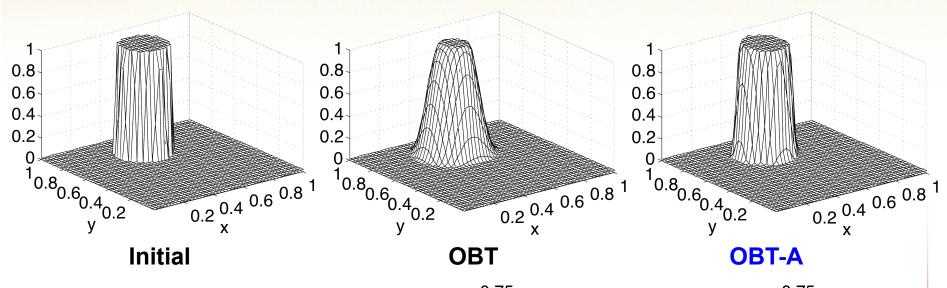
Because OBR/OBT completely separates reconstruction and bounds enforcement,

Target fluxes can **adapt to problem features** without concern for the bounds – the QP constraints will take care to enforce the bounds later!





## **OBT** with adaptive targets: cylinder

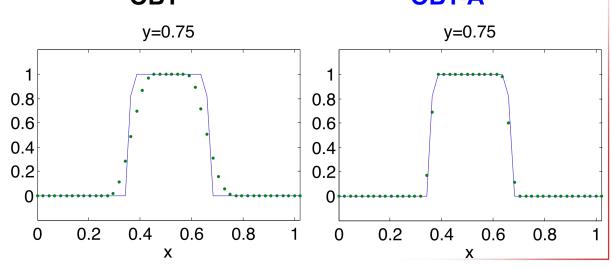


#### **Rotating cylinder**

$$u = -(y - 0.5)$$
  $v = (x - 0.5)$ 

Grid size: NxN, N=45

Time steps:  $2\pi N$  282







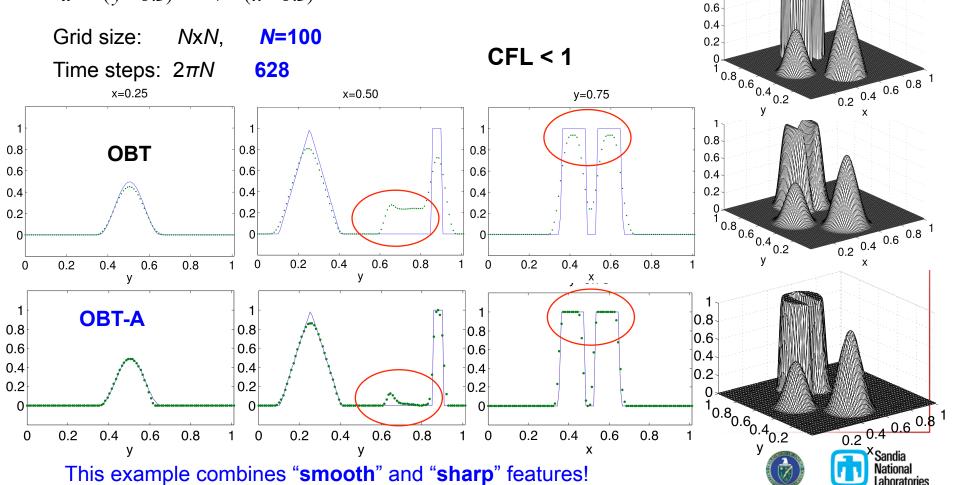
**Initial** 

0.8

## **OBT** with adaptive targets: combo

#### Rotating flow example (LeVeque, SINUM 33, 1996)

$$u = -(y - 0.5)$$
  $v = (x - 0.5)$ 



## **OBT** is as efficient as explicit transport

#### Matlab wall-clock times on a 3.06GHz Intel Core Duo MacBook Pro

"Cone"

| Cells   | Time steps | FCR (sec) | Van Leer | OBT     | OBT/FCR |
|---------|------------|-----------|----------|---------|---------|
| 64x64   | 400        | 4.59      | 4.50     | 4.92    | 1.1     |
| 128x128 | 810        | 44.64     | 47.25    | 48.62   | 1.1     |
| 256x256 | 1,610      | 387.88    | 393.64   | 403.23  | 1.0     |
| 512x512 | 3,220      | 5,715.08  | 5,804.66 | 5655.06 | 0.9     |

"Combo"

|   | Cells   | Time steps | FCR (sec) | Van Leer | OBT      | OBT/FCR |
|---|---------|------------|-----------|----------|----------|---------|
| • | 64x64   | 400        | 4.51      | 4.55     | 4.98     | 1.1     |
|   | 128x128 | 810        | 47.60     | 48.35    | 48.78    | 1.0     |
| 5 | 256x256 | 1,610      | 390.47    | 399.15   | 405.92   | 1.0     |
|   | 512x512 | 3,220      | 5802.05   | 5804.66  | 5,655.11 | 0.9     |





## Yet, OBT has superior robustness and accuracy

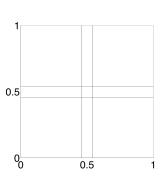
#### **Preservation of monotonicity**

|     | C=5      | C=6      | C=7      | C=14     | C=15     | C=16     | C=100    |
|-----|----------|----------|----------|----------|----------|----------|----------|
| OBT | <b>✓</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>V</b> |
| FCR | <b>✓</b> | ~        | ~        | X        | X        | X        | X        |

# 0.5

#### **Preservation of linearity**

|     | C=3      | C=4      | C=5      | C=15     | C=16     | C=100    |
|-----|----------|----------|----------|----------|----------|----------|
| OBT | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| FCR | <b>✓</b> | X        | X        | X        | ×        | ×        |



#### **Rates of convergence**

| Sine & repeated repair |         | FC       | CR      | OBT      |         |  |
|------------------------|---------|----------|---------|----------|---------|--|
| #Cells                 | #remaps | L₁ error | L₁ rate | L₁ error | L₁ rate |  |
| 128x128                | 640     | 2.81E-04 | -       | 2.77E-04 | -       |  |
| 256x256                | 1280    | 9.23E-05 | 1.61    | 6.82E-05 | 2.04    |  |
| 512x512                | 2560    | 3.65E-05 | 1.47    | 1.69E-05 | 2.03    |  |
| 1024x1024              | 5120    | 1.69E-05 | 1.35    | 4.18E-06 | 2.00    |  |



Mesh motion: "Repeated repair"





## Summary

A divide and conquer strategy: we use optimization ideas to separate discretization from tasks that are difficult to accomplish directly

#### Abstract theory for optimization-based additive operator splitting

- Increases concurrency by exposing constituent physics components
- Remove order & stability limitations (no splitting error)
- Rigorous mathematical foundations inherited from rich optimization theory
- Enables reuse of software components through synthesis of solvers and discretizations compatible with the PETSc strategy for "composable extreme-scale solvers"

#### Optimization-based conservative and monotone transport (OBT)

- Completely separates accuracy from the enforcement of bounds:
  - ✓ sources of error traceable!
  - √ targets can be adapted to local solution features
- OBT is global QP: yields the best possible, w.r.t. the objective, solution
  - ✓ Increases robustness: can run at higher CFL numbers
  - ✓ Increases accuracy: remains 2<sup>nd</sup> order under most challenging mesh motions
- Yet, resulting QP can be solved efficiently: cost = cost of explicit methods



